• Editor in Chief:
    Prof. Xian-Hua Li
  • Executive Editor:
    Prof. Wei Guo
  • Associate Editors:
    Prof. Michael Dürr
    Prof. Wei Hang
    Prof. Zhaochu Hu

    Print ISSN:0195-5373
    Online ISSN: 2708-521X
    2022 SCI IF: 3.4 (JCR, Q1)

          The ATOMIC SPECTROSCOPY is a peer-reviewed international journal started in 1962 by Dr. Walter Slavin. In November 2019, its ownership was transferred to Atomic Spectroscopy Press Limited (ASPL), Hongkong, P.R. China. It is intended for the rapid publication of Articles, Review/Mini-review, or Letters/Communications in the fields of elements, elemental speciation, and elemental isotopic analysis by XRF, AAS, AFS, ICP-OES, ICP-MS, GD-MS/OES, TIMS, SIMS, AMS, LIBS, AMS, NAA, INAA, various microanalysis techniques, and related sample preparation techniques. Manuscripts dealing with (i) instrumentation & fundamentals, (ii) methodology development & applications, and (iii) standard reference materials (SRMs) development can be submitted for publication.

    Publishing frequency: Six issues per year 

    +Advanced Search

    Recent Issues


  • Vol.44,2023,NO.3
    Pages: 119-190

    Full Issue
    Cover

  • Vol.44,2023,NO.2
    Pages: 55-118

    Full Issue
    Cover

  • Vol.44,2023,NO.1
    Pages: 1-54

    Full Issue
    Cover

  • Vol.43,2022,NO.6
    Pages: 423-473

    Full Issue
    Cover

  • Vol.43,2022,NO.5
    Pages: 364-422

    Full Issue
    Cover

  • Vol.43,2022,NO.4
    Pages: 266--363

    Full Issue
    Cover
    • Articles in Press
    • Current Issue
    • All Issues
    • Classic Articles
    • Virtual Issues
      Abstract:
      The analysis of lithium isotopes in high-aluminum content samples was accompanied by significant tailing of Al on Li using the traditional single-column method regardless of using single HCl or HNO3 as eluent. This hindered the precise determination of Li isotopes and made one-step column chromatographic separation of Li in silicate rocks challenging. Additional column procedures may be required to separate Li from Al in high Al samples, which would be time-consuming and result in reagent waste. In this study, the use of a 10 mL 0.2 mol L-1 HF and 0.5 mol L-1 HCl mixed eluent significantly reduced the Al tailing to less than 1% of that observed with the traditional method. The proposed purification procedure is applicable to a wide range of geological samples or minerals (e.g., silicates, seawater, sediments, and feldspars). Additionally, the matrix effect of Al and the Li concentration effect were investigated for accurate Li isotope analysis. The concentration effect, which was proved mainly led by the inappropriate treatment of the baseline. The real concentration effect yielded only a bias of 0.2‰ if normalized the solution of 20 ng g-1 Li with that of 140 ng g-1. In accounting for this, Li isotopes can now be analyzed quite accurately at variable concentrations during non-strictly concentration-matched conditions. The long-term external precision of δ7Li based on the international standard LSVEC was approximately ±0.2‰ (2SD), making it suitable for geological sample analyses. The proposed method was confirmed through the analysis of BCR-2, BHVO-2, AGV-2, BIR-1a, RGM-2, JF-1, SCo-1, GSP-2, GSR-6, and GSR-8. All the results agreed with previously published values. Besides, two in-house Li isotope solution standards CAGS-Li-P (6.25±0.25‰) and CAGS-Li-N (-15.02±0.18‰) were developed and routinely analyzed to monitor the instrumental mass bias.
      Abstract:
      Laser ablation is a crucial process in many types of laser-matter interactions. Therefore, an accurate simulation of the laser ablation is beneficial to understanding the underlying physics in those interaction dynamics. Laser ablation simulation essentially depends on the numerical solution of heat conduction equations, usually based on finite difference strategy. Common finite difference methods include forward-Euler, backward-Euler and Crank-Nicolson schemes, corresponding to three specific finite-difference weight factors, i.e. 0, 1, and 0.5. This study proposes a new method based on an optimal weight factor, which is not a fixed value but pertinently searched for each specific problem. Taking the temporal evolution of a one-dimensional temperature field as an example, we have demonstrated that utilizing the achieved optimal weight factor can yield significantly higher accuracy than using the routine weight factors. The results in this study have the potential to better understand the heat conduction dynamics and the laser ablation physics, and hence improve the performance of relevant LMI-based techniques in the future.
      Abstract:
      Molybdenum, nickel, and chromium play important roles in steel property. Laser-induced breakdown spectroscopy (LIBS) assisted with laser-induced fluorescence (LIF) is a promising technique with high sensitivity to elemental analyses. However, the spectra suffered from strong and unstable background from laser scattering when determining these three elements in steel matrix, which would deteriorate the accuracy. In this work, a self-adaptive method based on discrete wavelet transform (DWT) was introduced to solve this problem. No manual or subjective intervention is needed even if changing spectral ranges and elemental species. The LIBS-LIF spectral data were decomposed by Daubechies wavelet with the wavelet function db7 and the decomposition level 7. Then the spectra were reconstituted with background removal. In quantitative analyses, R squares in calibration curves of chromium, nickel, and molybdenum were greatly increased from 0.976, 0.965, and 0.981 to 0.995, 0.993, and 0.997, respectively; and the root-mean-square errors of cross-validation (RMSECVs) were significantly decreased from 0.0153, 0.0290, and 0.0152 wt.% to 0.00649, 0.00832, and 0.00793 wt.%, respectively. The results demonstrated both calibration model accuracy and analytical accuracy were greatly improved. This work provides an effective and convenient approach for modifying LIBS-LIF analyses in determination of molybdenum, nickel, and chromium in steels.
      Abstract:
      A novel sampling probe composed of a coaxial-tube that functions at a continuous-flow was used to inject 1 μL of sample into an inductively coupled plasma mass spectrometer. Simply touching a sample to the dome of liquid at the inlet of the liquid microjunction (LMJ) allows for sample introduction into a flowing carrier stream that transports sample into the plasma-similar to the mechanism of sample transport in flow injection analysis. This self-cleaning sampling system, allows for sampling of minute amounts of liquids at atmospheric pressure as well as leaching of soluble components off the surface of a solid. Preliminary results demonstrate the implementation of this probe in steady-state, flow injection, and surface sampling modes. A substantial reduction of matrix effects and oxide interferences resulted with 1 μL injections. In fact, the performance of LMJ with 1 μL injections in terms of spectroscopic and non-spectroscopic interference mitigation, sensitivity and detection limit is very similar to that previously reported with 1 μL mono-segmented flow analysis.
      2023,44(3),123-130
      DOI: 10.46770/AS.2023.113
      Abstract:
      Lead-tin solder is a useful piece of evidence from a crime scene and may be examined for information related to the construction or source of an improvised explosive device (IED). A technique based on electrothermal vaporization into inductively coupled plasma optical emission spectrometry was improved for the direct quantification of trace and major elements in solder (Ag, As, Bi, Cr, Fe, Sb, Sn). NIST 1728, a tin-alloy certified reference material, was used for external calibration and achieve a direct, fully solid-sampling procedure using only 0.5–3.0 mg of sample. Point-by-point internal standardization with Ar 404.442 nm was performed to compensate for sample loading effects on the plasma, and a background correction technique was introduced to improve the overall efficiency of analysis. As solder was observed to change composition during some mock scenarios of IED preparation, which limits how solder can be examined in forensics, different soldering conditions (temperature, solder size, cleaning of the soldering tip or not between subsequent samples) were studied using a Fe-tip soldering device. Statistical analyses including Student’s t-tests and a one-way analysis of variance revealed that none of these conditions resulted in contamination of the melted solder sample, hence confirming the viability of the mock procedure used to replicate IED soldering in research. A new qualitative discrimination method is introduced and demonstrated in a blind trial for matching and discriminating lead-tin solders. This method represents an improvement from past research and has potential for use in evaluating other forensic evidence involving ferrous-alloys.
      2023,44(3),131-141
      DOI: 10.46770/AS.2023.141
      Abstract:
      Secondary ion mass spectrometry (SIMS) for sulfur isotope analysis in chalcopyrite is an essential technique with exceptional spatial resolution, which enables precise constraints on mineralization mechanisms. However, the scarcity of matrix-matched chalcopyrite reference materials (RM) for SIMS hinders its accuracy and reliability. This study introduces a large-grained natural chalcopyrite RM (IGSD) for precise sulfur isotope analysis (δ34S) using SIMS and laser ablation multicollector-inductively coupled plasma mass spectrometry (LA-MC-ICPMS). Petrographic examination and electron microprobe analysis (EMPA) results confirm the homogeneity of major elements in the IGSD chalcopyrite grains. The results of in situ analysis at four SIMS laboratories and one LA-MC-ICPMS laboratory and bulk analysis confirm the homogeneity of the S isotope composition in the IGSD chalcopyrite grains. The in situ analysis result is consistent with the result of isotope ratio mass spectroscopy (IRMS), which falls within the same range of uncertainty. This supports the suitability of the IGSD chalcopyrite RM for in situ S isotope analysis. The recommended δ34S value of the IGSD chalcopyrite RM, based on IRMS, is 4.21 ± 0.23‰ (2SD, n = 30).
      2023,44(3),142-152
      DOI: 10.46770/AS.2023.079
      Abstract:
      Mass-independent chromium (Cr) isotope ratios measurements have been widely used in dating early solar system events and tracing the genetic relationships between different solar system, as well as terrestrial materials. Current analytical techniques need relatively large sample sizes, and this limits the application of Cr isotopes on precious mission return samples and some Cr-poor samples (e.g., BCR-2 with Cr contents of ~15 ppm). This paper reports a novel analytical method for mass-independent Cr isotopic ratios measurements using a Thermal Ionization Mass Spectrometer (TIMS) operated in total evaporation (TE) mode. A three-step cation column (AG 50W-X12 resin, 200?400 mesh) chemistry is used to purify Cr in various samples, including chondrites, basalts and peridotites, and the Cr yield is better than 92%. Residual organics from column resins is detrimental to Cr ionization on filaments, we demonstrate that this can be effectively removed by treating samples with H2O2 at 40 OC on hotplate. Single Cr measurements on rhenium filaments consume 15 to 20 ng of Cr and sustain 52Cr of ~10V for 10 to 20 minutes. Generally, for one sample of 200 ng Cr, 10?15 ng repeated measurements can be made and 2-standard error precisions of ~ 0.05 and ~ 0.10 for ε53Cr and ε54Cr*, respectively can be achieved. The reproducibility (the 2-standard deviation) for ε53Cr and ε54Cr is 0.05 and 0.07, respectively, tested by multiple measurements for DTS-2b (USGS dunite) and NWA 7734 (ordinary chondrite). Concentration and doping test (mainly for Fe) have also been conducted. These tests show that the Fe/Cr must be < 5 % and the measured 56Fe/52Cr<1 ‰ in order to achieve accurate ε54Cr. Finally, the ε53Cr and ε54Cr values measured by normal method on TIMS are systematically higher than those measured by total evaporation method on TIMS, which is potentially caused by non-kinetic mass-dependent fractionation during Cr evaporation and ionization on TIMS. The TE method could reduce this effect that may cause inaccurate mass-independent Cr isotope data on TIMS.
      2023,44(3),153-159
      DOI: 10.46770/AS.2023.086
      Abstract:
      Fe-Ni@ACC nanocomposite was synthesized by hydrothermal method and characterized using scanning electron microscope (SEM) and Fourier-transform infrared spectroscopy (FT-IR). Fe-Ni@ACC was used as adsorbent for magnetic dispersive micro solid-phase extraction (M-D-μSPE) procedure for separation and preconcentration of trace level of copper at trace levels before its determination by microsampling flame atomic absorption spectrometry (FAAS). The effects of various parameters such as pH, amount of adsorbent, eluent type and eluent volume, and sample volume on the recoveries of copper on Fe-Ni@ACC were optimized. The presented method is accurate, inexpensive and environmentally friendly and due to magnetic properties of the adsorbent, the separation process is very simple and fast. The method presents limit of detection (LOD)(3s/m) of 0.69 μg L?1, limit of quantification (LOQ)(10s/m) of 2.29 μg L?1, preconcentration factor of 40 and relative standard deviation (RSD %) (s/x) 1,18%. The accuracy of the method was confirmed by the analysis of TMDA-53.3 fortified water and TMDA-64.2 fortified water certified reference materials and addition-recovery tests to real samples. The present M-D-μSPE method was successfully applied to determination of copper level of tap water, cigarette, human hairs and black teas samples.
      2023,44(3),160-168
      DOI: 10.46770/AS.2023.102
      Abstract:
      The miscellaneous materials, including gangue, plastic, and wood commonly present in coal. These miscellaneous materials affect the reliability of coal analysis using laser-induced breakdown spectroscopy in power plants, but have significantly distinct spectral characteristics from coal. Hence, this paper proposes a step-by-step classification method to screening the false spectra of miscellaneous materials. The first step aims to identify the plastic and wood spectra by determining the existence of specific characteristic spectral lines using the standard deviation (SD) values. The spectral lines Si Ι 288.16 nm with the SD value of more than 850 counts and Li Ι 670.78nm with SD value of more than 1750 counts were used as the distinguishing markers. The classification accuracy of first step was 100%. Due to the high similarity between gangue and coal, the second step utilized the random forest (RF) classification model to identify the gangue spectra. The number of trees and random variables in the RF model was optimized. The accuracy of classification model without and with the proposed step-by-step method was 98.30 and 99.96%, respectively. To assess the necessity of spectra classification, a set of calorific value analysis was performed by adding false spectra of different proportions, which were compared with analysis after removing the false spectra. The root mean square error of prediction (RMSEP) was 0.42 MJ kg-1 (after removing), compared with 0.50 MJ kg-1 (mixing with 10% gangue spectra), 0.56 MJ kg-1 (mixing with 20% gangue spectra) and 0.57 MJ kg-1 (mixing with 30% gangue spectra). The results demonstrated that the proposed step-by-step classification method could effectively identify the spectra of coal and miscellaneous materials and improve the accuracy of coal analysis.
      2023,44(3),169-177
      DOI: 10.46770/AS.2023.115
      Abstract:
      X-ray fluorescence method was proposed for a determination of major elements in samples of snow cover solid phase collected in the urban areas of the Irkutsk region near aluminum smelter and combined heat and power plant. The limitation of the analyzed sample mass, which in some cases does not exceed 50 mg, as well as the features of the elemental composition (high Al and low Si contents) require a special methodological approach to quantitative elemental analysis. Due to the lack of matrix-matched certified reference materials, the calibration set includes certified reference materials of igneous and sedimentary rocks as well as aluminum ore samples. Results of X-ray fluorescence method were compared with the results obtained by reference methods including atomic absorption, atomic emission and spectrophotometry methods. It showed that it is necessary to use samples of snow cover solid phase analyzed by reference methods as a calibration set for X-ray fluorescence analysis, which ensures the quantitative determination of major elements (Na, Mg, Al, Si, P, K, Ca, Ti, Mn and Fe). These elements are important for environmental pollution investigation. Al was discovered as a main pollutant produced by aluminum smelter, Si, Ca, Ti, Mn, and Fe - by combined heat and power plant.
      2023,44(3),178-190
      DOI: 10.46770/AS.2023.117
      Abstract:
      This review's main purpose is to provide a succinct overview of recent developments in the field of volatile organic compounds (VOCs) detection based on Laser-induced breakdown spectroscopy (LIBS). VOCs are important air pollutants, which have great harm to the environment and human body. It is of great significance to realize the rapid detection of VOCs in the atmospheric environment. LIBS is a novel atomic emission spectroscopy technology, which can achieve the rapid in-situ detection of substances and shows great potential in the online monitoring of atmospheric VOCs. To illustrate the development and difficulties of LIBS technology in atmospheric VOCs detection, some typical cases for various aspects of are listed, including the detection of harmful elements in VOCs, source tracing of VOCs, the identification of isomers, and the detection of VOCs in living environment.
      Abstract:
      On-line chemical vapor generation atomic fluorescence spectrometry (CVG-AFS) was, for the first time, used to determine trace copper in biological samples by merging acidified sample solution with potassium tetrahydroborate aqueous solution in the presence of micro-amounts of 1,10-phenanthroline. Nitric acid, for both sample digestion and chemical vapor generation, was used as the acid medium. CVG conditions and instrumental parameters were optimized for the best CVG efficiency, good gas/liquid separation, and efficient atomization/excitation. Under the optimized conditions, a limit of detection of 4 ng mL(-1) was obtained for copper, with a linear dynamic range of over three orders of magnitude. The proposed method was successfully applied to the determination of copper in biological certified reference materials.
      Abstract:
      A rapid, sensitive, and cost-effective method was developed for the determination of trace mercury in water samples by on-line coupling of flow injection (FI) sorption preconcentration with oxidative elution to cold vapor atomic fluorescence spectrometry (CV-AFS). race Hg(II) in aqueous solution was preconcentrated by on-line formation of mercury diethyldithiocarbamate complex (Hg-DDTC) and adsorption of the resulting neutral complex on the inner walls of a PTFE knotted reactor (KR). A mixture of 16% (v/v) HCl and 10% (v/v) H2O2 was used as the eluent to remove the adsorbed Hg-DDTC from the KR, then convert on-line the Hg-DDTC into Hg(II) prior to its reduction to elemental mercury by KBH4 for subsequent on-line CV-AFS detection. The tolerable concentrations of Cd(II) As(Ill) Se(IV) Fe(III), Co(II), Ni(II), and Cu(II) and Cu(II) for the determination of 0.1 mug L-I Hg(II) were 0.1, 10, 0.1, 0.1, 0.7, 1, 0.3, and 0.2 mg L-1, respectively. With a sample loading flow rate of 3.1 mL, min(-1) for a 60-s preconcentration, a detection limit (3sigma) of 4.4 ng L-I was achieved at a sample throughput of 36 samples h(-1). The precision (RSD, n = 11) was 1.7% at the 1 0, 1-mug L-1 Hg (11) level. The method was successfully applied to the determination of mercury in a certified reference material, GBW(E) 080392, and a number of local natural water samples.
      Abstract:
      A method based on?cloud?point?extraction?was developed to determine?cadmium?at?the?nanogram?per?liter?level?in?sea-water?by?graphite?furnace?atomic absorption spectrometry. Diethyldithiocarbamate (DDTC) was used as?the?chelating reagent to form Cd-DDTC complex; Triton X-114 was added as?the?surfactant.?The?parameters affecting sensitivity and?extraction?efficiency (i.e., pH?of?the?solution, concentration?of?DDTC and Triton X-114, equilibration temperature, and centrifugation time) were evaluated and optimized. Under?the?optimum conditions, a preconcentration factor?of?51.6 was obtained for a 20-ml, water sample.?The?detection limit was as low as 2.0 ng L-1 and?the?analytical curve was linear?in?the?10.0-200.0 ng L-1 range with satisfactory precision (RSD < 4.7%).?The?proposed method was successfully applied to?the?trace?determination?of?cadmium?in?seawater.
      Abstract:
      The analytical procedure for the determination of trace rare earth impurities in high purity neodymium oxide (Nd2O3) by ICP-MS is described. The effect of ICP-MS operating parameters on the REO(H)(+)/RE+ production ratio was studied in detail, and the optimal ICP operating conditions were established. In this context, the relationship between REO(H)(+)/RE+ production ratio and the bond strength of the rare earth oxides is also discussed briefly. For the correction of the spectral interference induced by the matrix (neodymium), a simple correction equation was used for correcting the interferences of the polyatomic ions NdO+ and NdOH+ with Tb-159 and Ho-165. The proposed method was applied to the determination of trace rare earth impurities in high purity Nd2O3\, and the analytical results were in good agreement with the recommended reference values.
      Abstract:
      A powerful multielement analytical technique using laser ablation Inductively coupled plasma source mass spectrometry (LA-ICP-MS) for the sensitive determination of trace impurities in thin glass filaments, used as reinforcing material in the construction industry, was developed. The trace analysis was carried out directly on very thin solid strands (without any sample preparation steps) by LA-ICP-MS whereby a bundle of thin glass fibers (with a filament diameter of about 10 - 20 mum) was fixed on a thin, special tape of a target holder. The fibers were ablated in the ablation chamber with the aid of a commercial laser ablation system using a Nd-YAG laser at a wavelength of 266 nm). In order to verify the trace analytical data, the ablated T-glass fibers were analyzed using a quadrupole (LA-ICP-QMS) and double-focusing sector field mass spectrometer (LA-ICP-SFMS). The detection limits of the trace elements in glass fibers using the LA-ICP-MS with a quadrupole analyzer were in the sub mug g(-1) range, whereas using a sector,field mass spectrometer (LA-ICP-SFMS) the detection limits could be Improved by 3-4 orders of magnitude down to the low and sub ng g(-1) range. The multielement trace analytical method, developed for high-purity glass fibers, was applied to the determination of chemical composition on thin alkati-resistant glass and basalt fibers with finishing additives used in fine concrete for the building industry. The analytical results were quantified using standard reference materials (SRMs) of glass matrix, such as the NIST 612 glass SRM and the basalt geological reference glasses, KL-2G and ML3B-G, for the trace analysis of basalt glass fibers. The experimentally determined relative sensitivity coefficients (RSC) in LA-ICP-MS for both SRMs varied between 0.2 and 3 for most of the elements. An increase of the relative sensitivity coefficients was observed with increasing mass. The relative standard deviation (RSD) of most elements (N = 3) was T between 2 and 10%. The results of the trace element concentrations by LA-ICP-MS using different instrumentation are in good agreement.
      Abstract:
      A?sequential?injection?system?for?on-line?ion exchange separation and?preconcentration?of trace level amounts of metal ions with ensuing detection by electrothermal atomic absorption spectrometry (ETAAS) is described. Based on the use of?a?renewable microcolumn incorporated within an integrated lab-on-valve microsystem, the?column?is initially loaded with?a?defined volume of beads of an SP Sephadex C-25 cation exchange resin. After having been exposed to?a?metered amount of sample solution, the loaded bead suspension is precisely manipulated within the valve to allow reproducible elution of the retained analyte by 30 muL nitric acid (1: 16,v/v) which, via air segmentation, are then transported into the graphite tube for quantification. The content of the used?column?is afterwards discarded and new?column?material is aspirated for the next run. The ETAAS determination is performed in parallel with the?preconcentration?process of the ensuing sample. The performance of the?system?is demonstrated for the determination of bismuth. With 2.4-mL sample loading, an enrichment factor of 33.4,?a?detection limit of 27 ng 1:1, along with?a?sampling frequency of 10 h(-1) was obtained. The relative standard deviation was 2.3% for the determination of 2.0 mg 1:1 Bi (n = 7). The procedure was validated by determination of bismuth in?a?certified reference material CRM 320 (river sediment) and by bismuth spike recoveries in two human urine samples.
      Abstract:
      A?sequential?injection?system?for?on-line?sorbent extraction?preconcentration?in electrothermal atomic absorption spectroscopy was developed for the determination of trace thallium in geochemical samples. The TlBr4-1 complex was adsorbed on?a?20-mu L micro-column?(located at the tip of the furnace sampling probe) packed with XAD-8 resin. After sequentially aspirating separate zones of acetone, rinsing acid, and sample (pretreated with bromine) into?a?2.5-m long, 1-mm i.d. holding coil, the flow was reversed and directed to the?column. Sample loading, analyte adsorption,?column?rinsing and analyte elution were achieved within?a?single reversed syringe stroke. The adsorbed analyte was eluted into the furnace with 50 mu L acetone. Mutual mixing between sample, rinsing acid, and eluent were prevented by separating the zones with small air segments during metering. Tightening of?column?packing was avoided by?a?slight back-suction through the?column?after each operational cycle. With 1-mL sample loading, an enrichment factor of 15 was obtained with?a?detection limit of 18 ng/L thallium (3 sigma).?A?precision of 2.4% RSD (n=11, 4 μ g/L) and?a?sampling frequency of 11/hour were achieved. The method was applied to the analysis of geochemical samples. The results were in good agreement with the certified values of standard reference geochemical materials.
      Abstract:
      The metal content in several TCM drugs was determined by ICP-MS. The efficiencies of different sample digestion methods were compared. Since one of the products studied is known to contain arsenic sulfides as a main ingredient, a solvent fractionation scheme was developed and applied to speciate As in the product. The metal content in the same TCM drug produced by different manufacturers was compared. The concentration of some metals such as Pb and Cd differs widely with different manufacturers, suggesting that their origin is primarily from external contamination. The high sensitivity and precision of the ICP-MS technique offers considerable advantages over conventional ICP-OES techniques for the analysis of complex samples such as TCM materials. Standardized analytic protocols based on ICP-MS are being developed fur the determination and characterization of metals and trace elements in TCM materials for product quality assessment.
      Abstract:
      Theory, design, and operation of a dynamic reaction cell for ICP-MS

    Advertisements

    Download

      News & Announcements

        External Links

        Copyright © 2023 Atomic Spectroscopy Press Ltd All rights reserved
        Supported by:Beijing E-Tiller Technology Development Co., Ltd.