Abstract:Single-cell inductively coupled plasma mass spectrometry (SC-ICP-MS) has been introduced for the analysis of intracellular essential elements and nanoparticles (NPs) at the single cell level. However, it is still quite challenging for accurate and reliable determination. In this work, a high-efficiency sample introduction system was used for single cell analysis with ICP-MS. The system includes a microconcentric nebulizer, a low-volume single pass spray chamber, and a syringe pump. The transport efficiency of single cells was greatly improved to ~12%. In addition, 197Au signals in individual HepG2 cells, after incubation with gold nanoparticles (AuNPs) at the concentrations of 0.1, 0.5, and 1 μM for 12 h, were analyzed by time-resolved ICP-MS with dwell times of 100 μs and 5 ms, respectively. The 197Au signal-to-background ratio (S/B) at 100 μs dwell time was much higher than at 5 ms. For quantitative analysis, AuNP standard reference materials were used for calibration. The SC-ICP-MS data using NP calibration were in good agreement with those using solution ICP-MS analysis, validating the developed SC-ICP-MS method.