Raparthi Shekhar , J. Arunachalam , G. Radha Krishna , H.R. Ravindra , B. Gopalan
2004, 25(4):157-164. DOI: 10.46770/AS.2004.04.001
Abstract:
K. Chandra Sekhar , K.K. Gupta , S. Bhattacharya , S. Chakravarthy
2004, 25(4):165-169. DOI: 10.46770/AS.2004.04.002
Abstract:
Chun-gang Yuan , Gui-bin Jiang , Ya-qi Cai , Bin He , Jing-fu Liu
2004, 25(4):170-176. DOI: 10.46770/AS.2004.04.003
Abstract:A method based on?cloud?point?extraction?was developed to determine?cadmium?at?the?nanogram?per?liter?level?in?sea-water?by?graphite?furnace?atomic absorption spectrometry. Diethyldithiocarbamate (DDTC) was used as?the?chelating reagent to form Cd-DDTC complex; Triton X-114 was added as?the?surfactant.?The?parameters affecting sensitivity and?extraction?efficiency (i.e., pH?of?the?solution, concentration?of?DDTC and Triton X-114, equilibration temperature, and centrifugation time) were evaluated and optimized. Under?the?optimum conditions, a preconcentration factor?of?51.6 was obtained for a 20-ml, water sample.?The?detection limit was as low as 2.0 ng L-1 and?the?analytical curve was linear?in?the?10.0-200.0 ng L-1 range with satisfactory precision (RSD < 4.7%).?The?proposed method was successfully applied to?the?trace?determination?of?cadmium?in?seawater.
Zhi-Qi Zhang , Hong-Tao Yan , Lin Yue
2004, 25(4):191-196. DOI: 10.46770/AS.2004.04.006
Abstract:A rapid, sensitive, and cost-effective method was developed for the determination of trace mercury in water samples by on-line coupling of flow injection (FI) sorption preconcentration with oxidative elution to cold vapor atomic fluorescence spectrometry (CV-AFS). race Hg(II) in aqueous solution was preconcentrated by on-line formation of mercury diethyldithiocarbamate complex (Hg-DDTC) and adsorption of the resulting neutral complex on the inner walls of a PTFE knotted reactor (KR). A mixture of 16% (v/v) HCl and 10% (v/v) H2O2 was used as the eluent to remove the adsorbed Hg-DDTC from the KR, then convert on-line the Hg-DDTC into Hg(II) prior to its reduction to elemental mercury by KBH4 for subsequent on-line CV-AFS detection. The tolerable concentrations of Cd(II) As(Ill) Se(IV) Fe(III), Co(II), Ni(II), and Cu(II) and Cu(II) for the determination of 0.1 mug L-I Hg(II) were 0.1, 10, 0.1, 0.1, 0.7, 1, 0.3, and 0.2 mg L-1, respectively. With a sample loading flow rate of 3.1 mL, min(-1) for a 60-s preconcentration, a detection limit (3sigma) of 4.4 ng L-I was achieved at a sample throughput of 36 samples h(-1). The precision (RSD, n = 11) was 1.7% at the 1 0, 1-mug L-1 Hg (11) level. The method was successfully applied to the determination of mercury in a certified reference material, GBW(E) 080392, and a number of local natural water samples.